|
In any case the safety stop switch must be fail-safe: The robot handler must demonstrate that by dropping, or letting go of the stop mechanism the robot comes to an immediate stop and makes no further movement. The stop mechanism does not need to cut primary power as long as it can be demonstrated that the robot reliably comes to a complete halt.
The safety stop mechanism may be built to allow the robot to continue its run after it is reengaged.
Other controls
In addition to the kill mechanism, the robot may have a wireless or wired "pause" switch in the event that the robot must be stopped, but not necessarily powered down. An example of this kind of situation (which may or may not ever present itself) is a temporary time-out due to foot or vehicular traffic, which the event coordinators cannot control. This control does not need to be "fail-safe."
No other "remote" control beyond the safety stop & pause are allowed.
Liability
Each contestant is fully responsible for any damage to person or property caused directly or indirectly by his or her robot. The Seattle Robotics Association, including the Seattle Robotics Society, is not responsible for any damages caused by any competing robots.
Each contestant must sign a waiver of liability prior to the competition. If the waiver is not signed, the robot will not be allowed to compete.
Appendix 1– Course Layout Guidelines
When designing an SRS Robo-Magellan course, either for practice or competition, the following guidelines should be considered:
The course boundaries should be a rectangle or at least a polygon. The course should not have out of bounds sections located within the perimeter of the main course boundaries.
The actual distance from the start point to the destination cone, along the most reasonable path of navigation, should not be more than 1,000’.
Three bonus cones are suggested. One should be placed close to the most reasonable path between the starting point and the destination cone and have a multiplier of 0.8 or 0.9. A second cone should be placed in an area that is reachable (doesn’t have any terrain or obstacles more difficult than the rest of the course) but is around 100 feet off the most reasonable navigation path. That cone should have a multiplier of 0.5 to 0.7. Finally, one cone should be placed such that, without unusual or exceptionally well-designed navigational capability, robots will not be able to reach it. That cone should have a bonus multiplier of 0.1 or 0.2.
The robot should have to travel over a variety of diverse terrain such as grass, sand and concrete. There should be some spots where GPS coverage is poor or doesn’t exist. Obstacles such as trees, garbage cans and park benches should be included.
The robots should not be able to see the destination cone until it has traveled at least half way to the cone. A wall, hill or other obstacle may hide the cone. There should be no straight-line path between the start and destination points without some significant obstacle such as a curb, building, tree, stream, shrubbery or other similar barrier.
The course must not be impossible. A more satisfying contest for both builders and spectators will be had if robots are scored by time rather than distance to the destination cone.
Appendix 2 – Intended Rule Evolution
As Magellan robots become more capable, it is the intention of the SRS to evolve these rules to present a greater challenge. The following proposals are not currently part of the Robo-Magellan rules but are provided to give builders a better idea of how the contest may be run in the future so they can design their robots more appropriately.
The maximum distance between the starting point and the destination cone will be increased. The difficulty of the terrain will become more complex by adding steeper hills, more varied surfaces, etc. Finally, navigation to one or more intermediate points may be required prior to navigating to the destination cone. Other changes may be made to increase the difficulty of the contest.
The SRS intends to drop the rule stating contestants can walk the course for the purpose of taking measurements. The reason for dropping the rule is to offload more of the obstacle avoidance and path planning intelligence from the contestant to the robot. Because of this intended direction, we will continue supplying coordinates in written form at the beginning of each contest. Some sort of electronic distribution of the coordinates is being considered but the delivery mechanism has not been finalized.
The SRS does not intend to increase the maximum weight and size of a robot unless it becomes obvious that robots can no longer be built to run SRS Robo-Magellan courses without being physically larger or heavier. This is unlikely.
The RoboMagellan rules are owned and maintained by the Seattle Robotics Association.